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Geometric Proximity Search

Geometric Retrieval

Given a set of geometric objects in some space, store these objects
in a data structure so that queries about these objects can be
answered efficiently.

Proximity Searching

Report (or count) the objects that are close to some point/region.

Nearest Neighbors: Find the closest object to the query.

Range Searching: Report the objects within a query shape.
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Fundamental Issues

Efficiency: What is the query time as a function of the
number of objects and the amount of space used by the data
structure.

Space-Time Tradeoffs: As space increases, how fast does
query time decrease?

Computational Complexity: What are the best possible
tradeoffs?

Approximation: If small errors are allowed, can we answer
queries faster?
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Nearest Neighbor Searching

Nearest Neighbor Searching

Given a set S of n points, preprocess S into a
data structure T so that given a query point
q, the closest point p∗ ∈ S to q can be
reported efficiently.

Assumptions and Goals

“Intrinsic dimension” is a constant.
Ignore factors depending on dimension.

Ideal space: O(n)

Ideal query time: O(log n)

S

T
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Distance

Metric Space

. . . is a set S and function d : S × S ⇒ R, for any x , y , z ∈ S :

Non-negativity: d(x , y) ≥ 0 and d(x , y) = 0 iff x = y .

Symmetry: d(x , y) = d(y , x).

Triangle inequality: d(x , z) ≤ d(x , y) + d(y , z).

Euclidean distance: S = R2, d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2.

Edit distance: Number of edit ops to map one string to another.

Geodesic distance: Length of the shortest path on a manifold.
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Talk Overview

Nearest neighbor searching in Euclidean spaces:
Voronoi diagrams
Approximate NN-searching and BBD trees
Approximate Voronoi diagrams (AVDs)

Nearest neighbor searching in doubling spaces:
r -nets and net trees
Doubling oracle and the weakly explicit model
AVDs in metric spaces
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Euclidean Nearest Neighbors in the Plane

Voronoi Diagram

Given a point set S ⊂ R2 the Voronoi
diagram is a subdivision of the plane
into regions according to which point of
S is closest.

Preprocessing: Build the Voronoi
diagram and a point location
structure for S .
⇒ O(n log n) time, O(n) space.

Query Processing: Locate the cell
containing q. ⇒ O(log n) time.
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Higher Dimensions?

Problems in Higher Dimensions

The complexity of the Voronoi diagram grows rapidly —
O(n"d/2#).

Planar point location methods do not extend to higher
dimensions.
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Approximate Nearest Neighbor Searching

Motivates interest in approximate nearest neighbor searching.

Approximate Nearest Neighbor Searching

Given q and ε > 0, return p ∈ S so that

d(q, p) ≤ (1 + ε)d(q, p∗),

where p∗ ∈ S is the nearest neighbor of q. We
call p an ε-approximate nearest neighbor of q.

p∗

S

T(q)

q
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Box-Decomposition Tree: A Better Quadtree

Cell: Difference of two quadtree
boxes (inner and outer).

Centroid Decomposition: Used
to guarantee O(log n) depth.

splitting

shrinking
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Nearest Neighbor Searching with BBD trees

ε-NN Searching with BBD trees

Preprocessing: O(n) space.

Query Processing:
Locate the cell containing q
(O(log n) time).
Establish initial search radius.
Recursively visit nodes only if
they are close enough to offer a
closer point.

Query time: O(log n + (1/ε)d).
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BBD Tree Analysis

Query-Time Analysis

O(log n) time to locate q.

Let r = ‖qp‖, where p is the
closest point found by the search.

Any cell whose distance exceeds
r/(1 + ε) need not be visited.

The only cells to be split, span the
annulus between these two radii.

By a packing argument, the
number of such cells is O(1/εd−1).

q
r

r/(1 + ε)

p
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Euclidean Spaces — ε-Dependencies

Reducing ε-Dependencies

Space is O(n).
⇒ Great! No exponential dependence on dimension.

Query time is O(log n + (1/ε)d−1).
⇒ The O(1/ε)d−1 term dominates in practice.

Can it be reduced, perhaps at the expense of greater space?

Can we offer space-time tradeoffs?
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Euclidean Spaces - AVDs

Approximate Voronoi Diagram (AVD)

Introduced by Har-Peled [Har01].

Partition the space into cells.

Quadtree for fast point location.

Each cell stores a representative,
an ε-NN of any point in the cell.

Query time: O(log(n/ε)) (Fast!)

Space: Õ(n/εd−1) [Har01]
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Space-Time Tradeoffs

Existing Results

Ignoring logarithmic factors:

Space Time Method Product
n 1/εd−1 BBD-trees [AMN98] n/εd−1

n/ε
d−1

2 1/ε
d−1

2 Polytope Approx. [Cla94,Cha98] n/εd−1

n/εd−1 1 AVDs [Har01,AMM09] n/εd−1
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Space-Time Tradeoffs

A pattern emerges. . .

Space: Mε(n)

Query Time: Tε(n)

Tradeoff: Mε(n)Tε(n) = O(n/εd−1).

Challenge: Can we find a a single unified approach that achieves
the tradeoff, throughout the entire spectrum?
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Multiple-Representative AVD

What if we allow each cell to have
multiple representatives?

(t, ε)-AVD

Subdivision by BBD tree cells.

Associate each cell with at most t
representatives, such that for any
point in the cell, one of these is an
ε-NN.

Allowing more representatives reduces
the number of cells significantly.
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Space-Time Tradeoffs

Space-Time Tradeoffs for AVDs (Arya, et al. [AMM09])

Given a tradeoff parameter γ, 2 ≤ γ ≤ 1/ε, there is an AVD
achieving Mε(n) = O(nγd−1) and Tε(n) = Õ(1/(εγ)(d−1)/2).
Hence, we have

Mε(n)T 2
ε (n) =

n

εd−1

Remarkably: This is a better space-time tradeoff than
expected! Decreasing space by 1/2, increases query time by
only

√
2, not 2.

Lower bounds: We also have lower bounds showing that the
tradeoff is tight in the extremes γ = 2 and γ = 1/ε.
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Moving to Metric Spaces

Okay, Euclidean space seems to be pretty well understood.

Next Big Question

Can these results/techniques be generalized to general metric
spaces?

First, we need to define the concept of dimension for metric spaces.
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Doubling Spaces

xr

Given a metric space (S , d), define a
ball of radius r > 0 centered at x :
B(x , r) = {y ∈ S : d(x , y) ≤ r}.

Doubling dimension dim [Assouad 1983]

. . . is the minimum value ρ such that
every ball in the space can be covered
by 2ρ balls of half the radius.

Doubling space

. . . is a metric space of constant
doubling dimension.
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ε-NN Searching in Doubling Spaces

Results comparable to those for BBD trees exist in doubling spaces.

ε-NN Searching in Doubling Spaces [HM06,CG06]

Given an n-element point set in a doubling space, it is possible to
answer ε-NN queries in time O(log n) + (1/ε)O(1) from a data
structure of O(n) space.
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r -Net

r -Net

. . . is a subset X ⊆ S such that

(i) every point of S is within distance
r of some point of X

(ii) the pairwise distance between any
two points of X is ≥ r

S
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Net Tree

Net Tree

The leaves are S0 = S .

Let r be the minimum distance
between any two points of S .

Let S1 be an r -net of S0.

Let S2 be a (2r)-net of S1.

Let Sj be a (2j r)-net of Sj−1.

. . .

Until only one remains — the root.

Resulting structure is the net-tree.

S0
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No Space-Time Tradeoffs?

Lower bounds [HM06]

There exists an n-element point set in a doubling space that
requires query time Ω(log n) + (1/ε)Ω(1) (irrespective of the space
used) in the decision tree model.

This kills any hope of space-time tradeoffs.

Question

Is there any hope of achieving results in general doubling spaces
comparable to the best results for Euclidean spaces?
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Doubling Oracle and Weakly Explicit Model

Yes! But with a slightly stronger model.

Doubling Oracle

Consider any doubling space of dimension d . Given a ball b of
radius r a set of at most 2O(d) balls of radius r/2 covering b is
returned in constant time.

Weakly explicit model

We are given a doubling space with a doubling oracle.

The points used in the data structure can be drawn from the
ambient metric space.
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Main Result

Theorem

Let S be a set of n points in the doubling space. Given a
parameter 2 ≤ γ ≤ 1/ε, we can construct a data structure of
nγO(1) log(1/ε) space, which can answer ε-approximate nearest
neighbor queries in time O(log(nγ)) + 1/(εγ)O(1).

γ = 1/ε: O(log(n/ε)) query time, n/εO(1) space
⇒ matches the best query times known in Euclidean spaces.

γ = 2: O(log n) + (1/ε)O(1) query time, O(n log(1/ε)) space
⇒ nearly matches the best results for both Euclidean spaces
and doubling spaces.
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New Data Structure: Region-DAG

Unlike quadtree-based decomposition, the region-DAG is not a
hierarchical partition but a hierarchical covering scheme.

Each node is associated with a region of space called a cell,
which is the difference of two concentric balls, an outer ball
and an (optional) inner ball.

Doughnut cell Simple cell
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Region-DAG: Internal Nodes

The cell associated with an internal node is always simple, and is
covered by the cells associated with its children.

splitting

shrinking
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Conclusions

We have surveyed many of the results on approximate nearest
neighbor searching, both in Euclidean spaces of constant
dimension and space of constant doubling dimension.

We have shown how to generalize AVDs to doubling spaces,
which enable us to achieve much faster query times than
previously possible, and also the space-time tradeoffs.

Net trees hold promise for many other geometric retrieval
problems — retrieval involving points in motion.

What other geometric search problems can be generalized
from Euclidean space to doubling spaces? — Range
searching?
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